NumPy
The fundamental package for scientific computing with Python
D&I Grant from CZI
Including NumPy, SciPy, Matplotlib and Pandas

Powerful N-dimensional arrays
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.

Numerical computing tools
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

Interoperable
NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

Performant
The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.

Easy to use
NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level.

USA Outlet On Sale Les Biches San Jose Mall

Dieser Artikel passt für Ihre . Geben Sie Ihr Modell ein, um sicherzustellen, dass dieser Artikel passt. natürliche Schönheit Standfuß aus echtem Treibholz jede Tischlampe ein Unikat warmes Licht durch Schirm aus Leinen in hochwertiger Handarbeit gefertigt Produktbeschreibungen Das Material für den urig schönen Lampenfuß von Robinson wurde als Treibholz in Asien aufgelesen. Die Äste sind naturbelassen und variieren in Form und Größe. Dadurch ist jede Tischlampe einzigartig und ein Unikat für Ihre Wohnung! Der Lampenschirm aus grobem Leinen rundes das rustikal-natürliche Gesamtbild ab und sorgt für angenehmes Licht. Jede Tischleuchte wurde in mühevoller Handarbeit gefertigt und wird zum sicheren Blickfang in Ihrem Wohn- oder Schlafzimmer. Geben Sie Robinson ein Zuhause!!lt;br /gt; Details der Tischlampe Robinson klein Gesamt: 49,5x55x20cm Lampenschirm: 23x55x20cm Sockel: 2,5x40x20cm Gewicht: ca. 5,2Kg Kabel: 2m amp; Kippschalter Material: Treibholz/Schwemmholz amp; Leinen E27, 60W, 220-240V, 50Hz Energieklassen: A++ bis E Lieferumfang Lampenfuß mit Kabel amp; Schalter beiger Lampenschirm aus Leinen Aufsatzring für Leuchtfassung Leuchtmittel sind nicht beigelegt Dekorationsartikel sind im Lieferumfang nicht enthalten Discount Codes Sale USA Outlet On Sale Les Biches San Jose Mall Les Biches Beleuchtung => Innenbeleuchtung => Tisch- Stehleuchten customers shopping online we can choose to immediately pick up their order from their nearest store with our pick up at store feature or choose express delivery, to receive their product within 48 hours. Relaxdays Tischlampe Robinson Standard Holz Treibholz, 49,5 x 55
Open source
Distributed under a liberal BSD license, NumPy is developed and maintained publicly on GitHub by a vibrant, responsive, and diverse community.

Try NumPy
Enable the interactive shell

USA Outlet On Sale Les Biches San Jose Mall

Küche, Haushalt Wohnen => Basteln, Malen Handarbeiten => Partyzubehör Dekoration USA Outlet On Sale Les Biches San Jose Mall Club Green Diamant Snow Flake auf Silber Vorbau, Silber, 30 mm Les Biches from in-depth, expert buying advice to personal after-sales care tailored to each customer, Durchmesser 3 zm Ideal für alle Kuchen-Dekorationen. Kann auch verwendet werden als ein Handwerk Accessoire für Für Hochzeit, Party und Event Verpackungsmaße ( L x B ) in zm : 13.2 x 15.4 Produktbeschreibungen Qualität, einzigartiges Produkt um alle Geschmäcker zu treffen. Dieses Accessoire ist perfekt für alle Gelegenheiten und kommt in einer Reihe von Farben. Bitte beachten Sie, das Bild ist nur für Referenz und kann in einigen Fällen von den tatsächlichen Farben abweichen. Online Clearance
>

USA Outlet On Sale Les Biches San Jose Mall

home
Les Biches
Les Biches

|||
  • Nearly every scientist working in Python draws on the power of NumPy.

    NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.

    Quantum Computing Statistical Computing Signal Processing Image Processing Graphs and Networks Astronomy Processes Cognitive Psychology
    QuTiP Pandas SciPy Scikit-image NetworkX AstroPy PsychoPy
    PyQuil statsmodels PyWavelets OpenCV graph-tool SunPy
    Qiskit Xarray python-control Mahotas igraph SpacePy
    Seaborn PyGSP
    Bioinformatics Bayesian Inference Mathematical Analysis Chemistry Geoscience Geographic Processing Architecture & Engineering
    BioPython PyStan SciPy Cantera Pangeo Shapely COMPAS
    Scikit-Bio PyMC3 SymPy MDAnalysis Simpeg GeoPandas City Energy Analyst
    PyEnsembl ArviZ cvxpy RDKit ObsPy Folium Sverchok
    ETE emcee FEniCS Fatiando a Terra
  • NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.

    Array Library Capabilities & Application areas
    Dask Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
    CuPy NumPy-compatible array library for GPU-accelerated computing with Python.
    JAX Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU.
    Xarray Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
    Sparse NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
    PyTorch Deep learning framework that accelerates the path from research prototyping to production deployment.
    TensorFlow An end-to-end platform for machine learning to easily build and deploy ML powered applications.
    MXNet Deep learning framework suited for flexible research prototyping and production.
    Arrow A cross-language development platform for columnar in-memory data and analytics.
    xtensor Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
    XND Develop libraries for array computing, recreating NumPy's foundational concepts.
    uarray Python backend system that decouples API from implementation; unumpy provides a NumPy API.
    tensorly Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
  • USA Outlet On Sale Les Biches San Jose Mall

    NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:

    For high data volumes, Dask and Ray are designed to scale. Stable deployments rely on data versioning (DVC), experiment tracking (MLFlow), and workflow automation (Airflow and Prefect).

  • NumPy forms the basis of powerful machine learning libraries like scikit-learn and SciPy. As machine learning grows, so does the list of libraries built on NumPy. TensorFlow’s deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. PyTorch, another deep learning library, is popular among researchers in computer vision and natural language processing. MXNet is another AI package, providing blueprints and templates for deep learning.

    Statistical techniques called ensemble methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as XGBoost, LightGBM, and CatBoost — one of the fastest inference engines. Yellowbrick and Eli5 offer machine learning visualizations.

  • USA Outlet On Sale Les Biches San Jose Mall

    NumPy is an essential component in the burgeoning Python visualization landscape, which includes Matplotlib, Seaborn, Plotly, Altair, Bokeh, Holoviz, Vispy, Napari, and PyVista, to name a few.

    NumPy’s accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.

CASE STUDIES